Abstract

The present study investigated the 1H Nuclear Magnetic Resonance (NMR) spectra of hydrogen-rich water (HRW) produced using the EVObooster device. The analyzed HRW has pH = 7.1 ± 0.11, oxidation–reduction potential (ORP) of (−450 ± 11) mV, and a dissolved hydrogen concentration of 1.2 ppm. The control sample was tap water filtered by patented technology. A 600 NMR spectrometer was used to measure NMR spectra. Isotropic 1H nuclear magnetic shielding constants of the most stable clusters (H2O)n with n from 3 to 28 have been calculated by employing the gauge-including-atomic-orbital (GIAO) method at the MPW1PW91/6-311+G(2d,p) density function level of theory (DFT). The HRW chemical shift is downfield (higher chemical shifts) due to increased hydrogen bonding. More extensive formations were formed in HRW than in control filtered tap water. The exchange of protons between water molecules is rapid in HRW, and the 1H NMR spectra are in fast exchange mode. Therefore, we averaged the calculated chemical shifts of the investigated water clusters. As the size of the clusters increases, the number of hydrogen bonds increases, which leads to an increase in the chemical shift. The dependence is an exponential saturation that occurs at about N = 10. The modeled clusters in HRW are structurally stabilized, suggesting well-ordered hydrogen bonds. In the article, different processes are described for the transport of water molecules and clusters. These processes are with aquaporins, fusion pores, gap-junction channels, and WAT FOUR model. The exponential trend of saturation shows the dynamics of water molecules in clusters. In our research, the chemical shift of 4.257 ppm indicates stable water clusters of 4–5 water molecules. The pentagonal rings in dodecahedron cage H3O+(H2O)20 allow for an optimal arrangement of hydrogen bonds that minimizes the potential energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.