Abstract

Hydrogen bond formation and deformation are crucial for the structural construction and functional expression of biomolecules. However, direct observation of exchangeable hydrogens, especially for oxygen-bound hydrogens, relevant to hydrogen bonds is challenging for current structural analysis approaches. Using solution-state NMR spectroscopy, this study detected the functionally important exchangeable hydrogens (i.e., Y49-ηOH and Y178-ηOH) involved in the pentagonal hydrogen bond network in the active site of R. xylanophilus rhodopsin (RxR), which functions as a light-driven proton pump. Moreover, utilization of the original light-irradiation NMR approach allowed us to detect and characterize the late photointermediate state (i.e., O-state) of RxR and revealed that hydrogen bonds relevant to Y49 and Y178 are still maintained during the photointermediate state. In contrast, the hydrogen bond between W75-εNH and D205-γCOO- is strengthened and stabilizes the O-state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.