Abstract

Nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) is a cap-n-collar basic leucine zipper transcription factor that is involved in the cellular adaptive response to oxidative stress. Our previous study reported that targeted disruption of the Nrf2 gene in mice decreases adipose tissue mass and protects against obesity induced by a high-fat diet. Deficiency of Nrf2 in preadipocytes and mouse embryonic fibroblasts led to impaired adipogenesis. Consistent with these findings, the current study found that lack of Nrf2 in primary cultured mouse preadipocytes and 3T3-L1 cells hampered adipogenic differentiation induced by hormonal cocktails. Stable knockdown of Nrf2 in 3T3-L1 cells blocked the enhanced adipogenesis caused by deficiency of kelch-like ECH-associated protein 1 (Keap1), a Cul3-adapter protein that allows for Nrf2 to be ubiquinated and degraded by the 26S protesome complex. In addition, increased production of reactive oxygen species (ROS) and activation of Nrf2 occurred at the very early stage upon adipogenic hormonal challenge in 3T3-L1 cells, followed by an immediate induction of CCAAT/enhancer-binding protein β (C/EBPβ). Knockdown of Nrf2 led to reduced expression of C/EBPβ induced by adipogenic hormonal cocktails, chemical Nrf2 activators or Keap1 silencing. Cebpβ promoter-driven reporter assays and chromatin immunoprecipitation suggested that Nrf2 associates with a consensus antioxidant response element (ARE) binding site in the promoter of the Cebpβ gene during adipogenesis and upregulates its expression. These findings demonstrate a novel role of Nrf2 beyond xenobiotic detoxification and antioxidant response, and suggest that Nrf2 is one of the transcription factors that control the early events of adipogenesis by regulating expression of Cebpβ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.