Abstract

The 26Mg(p,ɣ)27Al reaction is important in nuclear astrophysics as it play a crucial role in understanding the nucleosynthesis processes in red giants and Wolf-Rayet stars. The 26Mg(p,ɣ)27Al reaction is responsible for the production of 27Al in these stars, while the 26Mg(3He,d)27Al reaction provides information on the asymptotic normalization coefficient for the ground state of 27Al.The asymptotic normalization coefficient (ANC) method is an indirect method that provides information on the normalization of the overlap functions for a given reaction. This information is crucial for nuclear astrophysics as it allows for the calculation of the direct component of the reaction rate at astrophysical relevant energies.In this work, the angular distribution of the 26Mg(3He,d)27Al reaction have been analyzed using separate sets of optical potentials via the Distorted Wave Born Approximation which allows for a better understanding of the reaction mechanism and the determination of the ANC. Consequently,thecross section and Astrophysical S factor for 27Al→26Mg + p have been calculated for the direct capture

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call