Abstract
Infection of mammalian skeletal muscle cells by Trichinella spiralis induces a series of changes that include: reentry of the terminally differentiated host cell into the cell cycle; suspension of infected cells in apparent G 2/M; and transcriptional inactivation of the differentiated skeletal muscle gene program. Cell cycle repositioning and genetic reprogramming are chronic characteristics of host cells that can remain infected for years. Nuclear antigens (NA, 79, 86 and 97 kDa) that localize to host cell nuclei have been detected with antibodies against T. spiralis proteins. Since NA may play a role in regulating the infected cell phenotype, their origin, nuclear compartmentalization, and biochemical properties were investigated. We show that a monoclonal antibody to a defined epitope of T. spiralis glycans binds these NA, which indicates the parasite origin of these proteins. NA were not extracted under conditions that solubilized chromatin from infected cell nuclei. In contrast, NA were coextracted with B lamins (nuclear envelope) by 4 M urea. Urea extraction was pH dependent (8.0), suggesting ionic interaction of NA in protein complexes. Nevertheless, confocal microscopy demonstrated colocalization of NA with host chromatin, and not B lamins. Nuclear protein complexes containing NA were observed under non-reducing conditions, and NA were readily cross-linked in isolated nuclei by succinimidyl protein conjugating reagents. The results establish methods to extract NA from infected cell nuclei for further biochemical analysis, establish the existence of nuclear protein complexes containing NA and demonstrate colocalization of NA with host chromatin. Collectively, the results provide a foundation from which to investigate the role of NA in regulating the T. spiralis infected skeletal muscle cell phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.