Abstract

Infection by the parasitic nematode Trichinella spiralis induces cell cycle repositioning (chronic suspension in apparent G 2/M) and genetic reprogramming in differentiated mammalian skeletal muscle cells. These changes occur in association with dramatic enlargement of infected host cell nuclei (as large as 17 μm in diameter) and nucleoli. Nuclear antigens (NA) that colocalize with host chromatin have been detected by antibodies to T. spiralis antigens, but the functions of these NA are unresolved. Mebendazole (MBZ) preferentially binds parasite versus host β-tubulins, is implicated in inhibiting secretion in nematodes and induces cytoplasmic changes in muscle cells infected with T. spiralis. These infected cell changes might be indirect via MBZ inhibition of parasite secretions. This effect would have implications for host/parasite interactions and was evaluated here. MBZ treatment of chronically infected mice caused: (1) a significant deformation of host nuclei and diminution of nucleoli by 4 and 6 days of treatment (dot), respectively; (2) a reduction of nuclear lamins A/C in infected cell nuclei that was concomitant with nuclear deformation; and (3) significant reductions in total RNA, general protein and acid phosphatase activity levels. These changes were associated with the depletion of NA from host nuclei detected by 4 dot. However, DNA content of infected cell nuclei was not detectably reduced and muscle gene expression was not reactivated. The cellular changes documented are likely to account for previously described cytoplasmic alterations induced by MBZ. Concomitant depletion of NA from infected cell nuclei suggests a role of these products in regulating nuclear functions of host cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.