Abstract

Terahertz (THz) semiconductor based quantum cascade lasers (QCLs) represent powerful and compact integrated light sources. To date they have been realized with various III-V materials where LO phonon emission becomes very effective as the temperature is increased, limiting the maximum operating temperature to 200K. To overcome this limitation, non-polar material systems are attractive because of their weaker e-phonon interaction. Theoretical studies have indicated n-type Ge/SiGe heterostructures where transport is associated to L electrons, as the most promising architecture [1]. Experimentally, sharp intersubband transitions in n-type strain compensated Ge/SiGe QWs have been observed in the 20–50 meV region [2]. Recently, non-equilibrium Green's functions calculations proved to be efficient in optimising high temperature performance of GaAs/AlGaAs THZ QCLs [3]. In the effort of realizing a Ge/SiGe THz QCL, we present here a QCL structure designed by means of non-equilibrium Green's functions [4], whose the bandstructure is reported in Fig.1(a). Epitaxial growth of strain-compensated Ge/SiGe heterostructure (≈1.5 μm thick) has been carried out by means of UHV-CVD yielding very good sample quality as visible from Fig.1(b). Mesa devices for transport experiments have been fabricated by dry etching and metallization. In Fig.1(c) a series of I-V curves as a function of the heatsink temperature display a thermally activated behaviour with E act ≃ 10 meV. From low temperature (4 K) magnetotransport [5] in a magnetic field parallel to the current direction shows characteristics oscillations. we can deduce an energy distance between the lasing states of E 23 =19.5 meV, in good agreement with the theoretical calculation. Optical experiments are ongoing and experimental results will be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call