Abstract
The overwhelming presence of categorical/sequential data in diverse domains emphasizes the importance of sequence mining. The challenging nature of sequences proves the need for continuing research to find a more accurate and faster approach providing a better understanding of their (dis) similarities. This paper proposes a new Model-based approach for clustering sequence data, namely nTreeClus. The proposed method deploys Tree-based Learners, k-mers, and autoregressive models for categorical time series, culminating with a novel numerical representation of the categorical sequences. Adopting this new representation, we cluster sequences, considering the inherent patterns in categorical time series. Accordingly, the model showed robustness to its parameter. Under different simulated scenarios, nTreeClus improved the baseline methods for various internal and external cluster validation metrics for up to 10.7% and 2.7%, respectively. The empirical evaluation using synthetic and real datasets, protein sequences, and categorical time series showed that nTreeClus is competitive or superior to most state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.