Abstract

Low transfection efficiency and inactivation by serum are the major drawbacks for cationic polymers when used as non-viral gene vectors. Here, a series of N-succinyl-chitosan-graft-polyethylenimine (NSC-g-PEI) copolymers with different compositions were synthesized through grafting low molecular weight PEI (800 Da) to N-succinyl-chitosan. An agarose gel electrophoresis assay showed NSC-g-PEIs had good binding capability with DNA and the particle size of the NSC-g-PEI-DNA complexes was between 150 to 300 nm as determined by a Zeta sizer. In vitro transfection of NSC-g-PEI-DNA complexes for 293T, HeLa and CHO cells was investigated. It was found that the transfection efficiency of NSC-g-PEI-DNA complexes was higher than that of DNA combined PEI (25 kDa) and the transfection efficiency increased with the increasing GD of PEI. More importantly, the NSC-g-PEI-DNA complexes were stable and the transfection efficiency was not affected obviously in the presence of serum with different concentrations. In addition, NSC-g-PEIs had a lower cytotoxicity than PEI (25 kDa) and the toxicity increased with increasing GD of PEI. The NSC-g-PEI copolymers will have a good potential as efficient non-viral gene vectors in the presence of serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.