Abstract

Retinal ischemia–reperfusion (I/R) involves an extensive increase in reactive oxygen species as well as proinflammatory changes that result in significant histopathologic damage, including neuronal and vascular degeneration. Nrf2 has a well-known cytoprotective role in many tissues, but its protective function in the retina is unclear. We investigated the possible role of Nrf2 as a protective mechanism in retinal ischemia–reperfusion injury using Nrf2−/− mice. I/R resulted in an increase in retinal levels of superoxide and proinflammatory mediators, as well as leukocyte infiltration of the retina and vitreous, in Nrf2+/+ mice. These effects were greatly accentuated in Nrf2−/− mice. With regard to histopathologic damage, Nrf2−/− mice exhibited loss of cells in the ganglion cell layer and markedly accentuated retinal capillary degeneration, as compared to wild-type. Treatment with the Nrf2 activator CDDO-Me increased antioxidant gene expression and normalized I/R-induced superoxide in the retina in wild-type but not Nrf2−/− mice. CDDO-Me treatment abrogated retinal capillary degeneration induced by I/R in wild-type but not Nrf2−/− mice. These studies indicate that Nrf2 is an important cytoprotective mechanism in the retina in response to ischemia–reperfusion injury and suggest that pharmacologic induction of Nrf2 could be a new therapeutic strategy for retinal ischemia–reperfusion and other retinal diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.