Abstract
Neuropeptide Y (NPY) is the most powerful central neuropeptide implicated in feeding regulation via its receptors. Understanding the role of NPY system is critical to elucidate animal feeding regulation. Unlike mammal, the possible mechanisms of NPY system in the food intake of teleost fish are mostly unknown. Therefore, we investigated the regulatory mechanism of NPY and NPY receptors in Siberian sturgeon. In this study, we cloned the cDNA encoding NPY, and assessed the effects of different energy status on npy mRNAs abundance. The expression of npy was decreased in the brain after feeding 1 and 3 h. Besides, the expression of npy was increased after fasting within 15 days, while exhibiting significant decrease after refeeding. In order to further characterize the role of NPY receptor in fish, we performed acute intraperitoneal (i.p.) injection of NPY Y1 and Y2 receptor agonists, which is [Leu 31, Pro 34] NPY and NPY13-36 respectively. The results showed that the food intake of Siberian sturgeon was increased within 30 mins after injection of both Y1 and Y2 receptor agonist. To explore the relationship between NPY, NPY receptors and another appetite peptides, we examined the level of npy, cocaine- and amphetamine-regulated transcript (cart) and melanocortin-4 receptor (mc4r) by injected Y1 and Y2 receptor agonist. The results suggested that cart expression was regulated by NPY which acts on Y1 receptor or Y2 receptor. While mc4r expression just was mediated by NPY and Y1 receptor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.