Abstract

Abstract A study of pulsed corona discharge technology for NO x reduction from diesel engine exhaust is presented. The pulsed corona reactor consists of two coaxial cylinders used as electrodes of opposite polarities. The results are presented in terms of the cleanness (mass of NO x removed relative to its initial mass), and the efficiency (the energy required to theoretically dissociate 1 g of NO x , relative to the energy actually needed). Experimental results show that for a pulsed corona, the polarity of the electrodes has no significant effect on the reactor performance. Cleanness was found to be independent of the engine load. The pulsed corona reactor design considers the most efficient means of energy transfer from pulse-forming capacitor to the discharge zone. It is shown experimentally that an external electrode of smaller diameter provides better NO x reduction. For a pulsed corona reactor, the residence time that provides the best performance must be sufficient to allow all the pollutant molecules to interact with the radicals produced by the corona discharge. The residence time is calculated for the pulsed corona reactor and experimentally confirmed to be the one that results in the best cleanness and efficiency of NO x removal. The empirical relations, based on working conditions, are obtained and provide a route for reactor design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.