Abstract

Patent maps are an effective means of discovering potential technology opportunities. However, this method has been of limited use in practice since defining and interpreting patent vacancies, as surrogates for potential technology opportunities, tend to be intuitive and ambiguous. As a remedy, we propose an approach to detecting novel patents based on systematic processes and quantitative outcomes. At the heart of the proposed approach is the text mining to extract the patterns of word usage and the local outlier factor to measure the degree of novelty in a numerical scale. The meanings of potential technology opportunities become more explicit by identifying novel patents rather than patent vacancies that are usually represented as a simple set of keywords. Finally, a novelty-focused patent identification map is developed to explore the implications on novel patents. A case study of the patents about thermal management technology of light emitting diode (LED) is exemplified. We believe the proposed approach could be employed in various research areas, serving as a starting point for developing more general models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.