Abstract

Novel experiences activate the brain's reward system in a manner similar to drugs of abuse, and high levels of novelty-seeking and sensation-seeking behavior have been associated with increased susceptibility to alcohol and drug abuse. Here, we show that metabotropic glutamate receptor 5 (mGluR5) signaling on dopaminoceptive neurons is necessary for both novelty-seeking behavior and the abstinence-induced escalation of alcohol drinking. Mice harboring a transgene expressing microRNA hairpins against mGluR5 messenger RNA under the control of the D1 dopamine receptor gene promoter (mGluR5(KD-D1)) were tested in a battery of behavioral tests measuring learning abilities, anxiety levels, reactions to novelty, operant sensation seeking, and alcohol sensitivity. In addition, we have developed a method to assess long-term patterns of alcohol drinking in mice housed in groups using the IntelliCage system. mGluR5(KD-D1) mice showed no behavioral deficits and exhibited normal anxiety-like behaviors and learning abilities. However, mGluR5(KD-D1) animals showed reduced locomotor activity when placed in a novel environment, and exhibited decreased interaction with a novel object. Moreover, unlike control animals, mutant mice did not perform instrumental responses under the operant sensation-seeking paradigm, although they learned to respond for food normally. When mGluR5(KD-D1) mice were provided access to alcohol, they showed similar patterns of consumption as wild-type animals. However, mutant mice did not escalate their alcohol consumption after a period of forced abstinence, but control mice almost doubled their intake. These data identify mGluR5 receptors on D1-expressing neurons as a common molecular substrate of novelty-seeking behaviors and behaviors associated with alcohol abuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.