Abstract

In this brief, we proposed, based on the polarity upset mechanism of single-event transient voltage of n-channel metal–oxide–semiconductor (nMOS) transistors, a novel radiation hardened by polar design (RHPD) 12T SRAM cell to enhance the reliability and operation speed for space applications. Simulation results in Semiconductor Manufacturing International Corporation (SMIC) 65-nm CMOS commercial standard process show that the proposed RHPD-12T cell can tolerate all single-node upsets. Meanwhile, compared with We-QUATRO, QUATRO, and dual interlocked storage cell (DICE), the write speed of the proposed cell can be reduced by ~41.8 and ~35.3%, and the static power consumption is reduced by ~41.6 and ~46.3%, respectively. Monte Carlo (MC) simulation has proved that under high frequency and low supply (0.6 V) voltage, RHPD-12T has the minimum write failure probability compared with five other SRAM cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.