Abstract

The development of the transportation industry has led to an increasing number of overloaded vehicles, which reduces the service life of asphalt pavements. Currently, the traditional vehicle weighing method not only involves heavy equipment but also has a low weighing efficiency. To deal with the defects in the existing vehicle weighing system, this paper developed a road-embedded piezoresistive sensor based on self-sensing nanocomposites. The sensor developed in this paper adopts an integrated casting and encapsulation technology, in which an epoxy resin/MWCNT nanocomposite is used for the functional phase, and an epoxy resin/anhydride curing system is used for the high-temperature resistant encapsulation phase. The compressive stress-resistance response characteristics of the sensor were investigated by calibration experiments with an indoor universal testing machine. In addition, the sensors were embedded in the compacted asphalt concrete to validate the applicability to the harsh environment and back-calculate the dynamic vehicle loads on the rutting slab. The results show that the response relationship between the sensor resistance signal and the load is in accordance with the GaussAmp formula. The developed sensor not only survives effectively in asphalt concrete but also enables dynamic weighing of the vehicle loads. Consequently, this study provides a new pathway to develop high-performance weigh-in-motion pavement sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.