Abstract

In this article we describe novel, water-based, crosslinkable fluorinated polymers that form coatings with excellent antigraffiti properties. The synthesis of the binders and the surface and bulk properties of their coatings are discussed. The surface properties of these coatings are characterized in terms of their surface-free energy, as calculated from static contact angle measurements. The distribution of the fluorine atoms throughout the coating is measured by X-ray photoelectron spectroscopy (XPS). The bulk properties are studied by determining the crosslink density through dynamic mechanical thermal analysis (DMTA), and the effect of the crosslinking conditions on the crosslink density and the antigraffiti properties is discussed. The results indicate that a combined action of surface and bulk properties gives these coatings their excellent antigraffiti properties. The applicability of these polymers as protective coatings for metal and concrete surfaces are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call