Abstract

Two series of polyurethane (PU) networks based on Boltorn ® hyperbranched polyester (HBP) and hydrox- yethoxy propyl terminated poly(dimethylsiloxane) (EO-PDMS) or hydroxy propyl terminated poly(dimethylsiloxane) (HP- PDMS), were synthesized. The effect of the type of soft PDMS segment on the properties of PUs was investigated by Fourier transform infrared spectroscopy (FTIR), contact angle measurements, surface free energy determination, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). The surface characterization of PUs showed existence of slightly amphiphilic character and it revealed that PUs based on HP-PDMS have lower surface free energy, more hydrophobic surface and better waterproof performances than PUs based on EO-PDMS. PUs based on HP- PDMS had higher crosslinking density than PUs based on EO-PDMS. DSC and DMTA results revealed that these newly- synthesized PUs exhibit the glass transition temperatures of the soft and hard segments. DMTA, SEM and AFM results confirmed existence of microphase separated morphology. The results obtained in this work indicate that PU networks based on HBP and PDMS have improved surface and thermomechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call