Abstract
Heavy metals employed in various industrial applications can negatively impact both the ecosystem and human beings. Common techniques for eliminating pollutants often rely on expensive materials. So, this study focuses on exploring economical alternatives obtained from nature and textile waste. In this study, a hydrogel composite was synthesized using wool nonwoven fabric mixed with alginate, gum Arabic (GA), and xanthan gum (XG) to evaluate its efficacy in adsorbing lead (Pb) from aqueous solutions. The composites were characterized using SEM, FTIR, and XPS to understand their structure and composition before and after Pb adsorption. The effects of time, pH, and initial metal ion concentration on Pb adsorption by the composite were also investigated. Maximum adsorption was observed at a basic pH, with the highest value recorded at 85.2 mg/g. Notably, 88.2 % of this maximum adsorption was achieved within 60 min, indicating a rapid adsorption process. Kinetic studies indicated that the adsorption process best fits pseudo-second-order kinetics, while the Freundlich model, with an R² value of 0.95, suggests a chemisorption mechanism. The developed wool-alginate-gum hydrogel composite has shown to be a promising candidate for the removal of Pb²⁺ ions from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Carbohydrate Polymer Technologies and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.