Abstract
Asthenospermia is a type of sperm that has malformed sperm with movement disorders that lead to male infertility. DNAH9 is a member of the dynein family and a central part of the outer dynein arm of cilia and flagella. DNAH9 gene defects are associated with primary ciliary dyskinesia and ultrastructural abnormalities in ciliary axial ultrastructure. However, the role of DNAH9 in sperm motility remains unclear, prompting us to investigate its function in spermatozoa. Familial Sanger sequencing showed that sterile males carried homozygous DNAH9 variants (c. 12218A>C, p. N4073T) and compound heterozygous variants (c.8617G>A, p.V2873M; c.11742A>T, p.E3914D), respectively. Transmission electron microscopy revealed these variants resulted in a significant lack of outer dynein arms in the cross-sectional view of the axoneme in both patients. Immunofluorescence results showed that these variants can lead to decline in DNAH9 protein expression, which led to the dysfunction of flagellar ultrastructure-related proteins, including DNAI1, DNAH1 and DNAH10. In conclusion, we identified novel biallelic variants in DNAH9 that likely bring about sharply decreased motility of spermatozoa in the two patients with asthenospermia. Our findings will widen the variant spectrum of known DNAH9 variants involving asthenospermia and further offer more proofs for genetic counseling and diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.