Abstract
We propose a novel system for a two-dimensional (2-D) single-shot tomography and profilometry that can be realized by installing a Virtually Imaged Phased Array (VIPA) into a 2-D interferometer with a CCD. The VIPA simultaneously outputs incoherent optical frequency combs (OFC) whose teeth interval, such as free-spectral range (FSR), are scanned as a function of its output angle when the low-coherent light source is incident into the VIPA. Thus, the single-shot imaging can be realized with the FSR scanned Fourier-domain OFC interference monitored by the CCD. In other words, the fast imaging without mechanical moving part can be operated by the proposed OFC interferometry. And VIPA can use all of incident light. So this system enables to realize a high energy efficient interference measurement. FSR of the output light of the VIPA is nonlinear with respect to the sweep direction. So we simulated the characteristics of the VIPA. As a result, we knew linearity optimal output angle depend on reflective index of the VIPA. And the VIPA can change the measurement range on the CCD by the number. In other word, the VIPA can zoom in and out no mechanical part. We will present the operation principle with its confirmed results in terms of both simulation and experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.