Abstract

Virtually imaged phased array (VIPA) has the advantages of insensitive to polarization, simple structure and high in spectral resolution. Compared with commonly used dispersive devices, such as diffraction gratings or Fabry-Perot (FP) interferometers, VIPA is self-aligned and has high transmission efficiency. In this paper, the dispersion mechanism of the VIPA is introduced in detail, the influence of incident angle and VIPA thickness on the dispersion performance near 532 nm is calculated and analyzed with MATLAB. According to the calculated results, the selected VIPA device has a thickness of 6 mm and an incident angle of 4°. The spectral dispersion system, in combination with corresponding optical devices, is designed and simulated with ZEMAX, then the experimental system was built. The spectral dispersion system based on VIPA, at a central wavelength of 532 nm, has the free spectral range of 15.08 GHz and the spectral resolution of 0.87 GHz. The system designed in this paper can be applied to high-resolution spectral detection such as Brillouin scattering, Raman scattering, laser fluorescence, laser-induced plasma and so on.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.