Abstract
Functionally diverse devices with artificial neuron and synapse properties are critical for neuromorphic systems. We present a two-terminal artificial leaky-integrate-fire (LIF) neuron based on 6 nm Hf0.1Zr0.9O2 (HZO) antiferroelectric (AFE) thin films and develop a synaptic device through work function (WF) engineering. LIF neuron characteristics, including integration, firing, and leakage, are achieved in W/HZO/W devices due to the accumulated polarization and spontaneous depolarization of AFE HZO films. By engineering the top electrode with asymmetric WFs, we found that Au/Ti/HZO/W devices exhibit synaptic weight plasticity, such as paired-pulse facilitation and long-term potentiation/depression, achieving >90% accuracy in digit recognition within constructed artificial neural network systems. These findings suggest that AFE HZO capacitor-based neurons and WF-engineered artificial synapses hold promise for constructing efficient spiking neuron networks and artificial neural networks, thereby advancing neuromorphic computing applications based on emerging AFE HZO devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.