Abstract

High nitrate (NO3−-N) concentration in the effluent of wastewater treatment plants (WWTPs), cannot meet the increasing stringent discharge limits. Hence, the tertiary treatment is necessary to lower the total nitrogen concentration. In this study, an innovative partial denitrification (PD)-Anammox process was applied to remove the nitrate nitrogen (20–40 mg N/L) from secondary effluent. The nitrate wastewater were firstly fed to PD sequencing batch reactor (SBR, 10 L) to produce nitrite along with the low carbon/nitrogen ratio (C/N) municipal sewage (NH4+ of 57.8 mg N/L, COD of 175.8 mg/L), then the effluent from SBR was pumped to the anaerobic sludge blanket (UASB, 3.2 L) performing anammox for further nitrogen removal. The integrated process was operated for 224 days with the secondary effluent to municipal sewage volume ratio of 2.9–6. The results suggested that an excellent nitrate removal efficiency of 97.9% was achieved, and the mean removal efficiency of NH4+-N and COD from municipal sewage were 95.2% and 81.6%, respectively, leading to the total nitrogen and COD concentration in the final effluent as low as 4.0 mg N/L and 30.1 mg/L, respectively. Anammox was the main nitrogen removal pathway with a mean proportion of 78.2%, and Candidatus_Brocadia was identified as the dominating genus. Furthermore, it was found that a minor nitrous oxide (N2O) was produced in the integrated process. The PD-Anammox process was verified to be economically and environmentally feasible for retrofitting of existing plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call