Abstract
Enhanced ferroelectricity in two-dimensional (2D) SnTe exhibiting a higher transition temperature (Tc) than its bulk counterpart was recently discovered [Chang et al., Science 353(6296), 274–278 (2016)]. Herein, we report that nonferroelectric PbTe can be transformed into a ferroelectric phase by downsizing to two dimensions with suitable equi-biaxial tension. The crystal structure of the ferroelectric phase of 2D PbTe was determined using evolutionary algorithms and density functional theory. The dynamic stabilities of the predicted new phases were investigated using phonon calculations. To validate our results obtained using PbTe, we have also studied the ferroelectricity in GeTe and SnTe at the 2D level and compared them with the literature. The unequal lattice constants and the relative atomic displacements are found to be responsible for ferroelectricity in 2D GeTe, SnTe, and strained PbTe. This study facilitates the development of new 2D ferroelectrics via strain engineering and promotes the integration of ferroelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.