Abstract

Using sterculia lychnophora seeds as precursors for the first time, fluorescent carbon dots (CDs) were synthesized by simple hydrothermal treatment. The quantum yield of as-synthesized CDs was 6.9% by using quinine sulfate as the reference. The fluorescence of CDs could be effectively quenched by a MnO2 nanosheet based on fluorescence resonance energy transfer (FRET). Ascorbic acid (AA) could reduce MnO2 to Mn2+ and result in the destruction of the MnO2 nanosheets, which could induce the fluorescence recovery of the CDs. In particular, alkaline phosphatase (ALP) could bio-catalyze acid 2-phosphate (AAP) hydrolysis to AA. Here, an efficient fluorescence probe based on a CDs-MnO2 nanosheet for rapid and selective detection of ALP was reported for the first time. Excellent performance for the detection of ALP was observed with high sensitivity and a detection limit of 0.4U/L owing to the low background. The detection of ALP in human serum was conducted with satisfactory results, demonstrating its potential applications in clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.