Abstract
Present paper uses powerful technique of interval neural network (INN) to simulate and estimate structural response of multi-storey shear buildings subject to earthquake motion. The INN is first trained for a real earthquake data, viz., the ground acceleration as input and the numerically generated responses of different floors of multi-storey buildings as output. Till date, no model exists to handle positive and negative data in the INN. As such here, the bipolar data in [ −1, 1] are converted first to unipolar form, i.e., to [0, 1] by means of a novel transformation for the first time to handle the above training patterns in normalized form. Once the training is done, again the unipolar data are converted back to its bipolar form by using the inverse transformation. The trained INN architecture is then used to simulate and test the structural response of different floors for various intensity earthquake data and it is found that the predicted responses given by INN model are good for practical purposes.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have