Abstract

In this study, novel thin-GaN-based ultraviolet light-emitting diodes (NTG-LEDs) were fabricated using wafer bonding, laser lift-off, dry etching, textured surface, and interconnection techniques. Placing PN electrodes on the same side minimized the absorption caused by electrodes in conventional vertical injection light-emitting diodes (V-LEDs) and the current spreading was improved. The light output power (700 mA) of the NTG-LEDs was enhanced by 18.3% compared with that of the V-LEDs, and the external quantum efficiency (EQE) of the NTG-LEDs was also relatively enhanced by 20.0% compared with that of a reference device. When the current operations were 1,500 mA, the enhancements of the light output power and EQE were 27.4% and 27.2%, respectively. Additionally, the efficiency droop was improved by more than 15% at the same current level.

Highlights

  • A wide range of applications use ultraviolet (UV) lamps as a light source

  • The L-I characteristics indicate that the NTG-LEDs demonstrated more favorable linear characteristics during a high current injection than did the vertical injection light-emitting diodes (V-LED)

  • When the current was continually increased to 1,500 mA, the power difference increased to 118 mW (548 mW for NTG-LEDs and 430 mW for V-LEDs)

Read more

Summary

Introduction

A wide range of applications use ultraviolet (UV) lamps as a light source These applications, such as chemical ink curing, disease or virus inspection, and air/water purification, traditionally adapt mercury-based lamps that are not environmentally friendly. To replace these mercury-based units, nitride-based UV light-emitting diodes (UV-LEDs) have recently received considerable attention because of their light-weight, high-efficiency, and eco-friendly features [1-4]. The traditional nitride-based UV-LEDs cannot attain extremely high efficiency. Several improvements, such as AlInGaN barriers, high-temperature grown AlN buffers, pattern sapphire substrates, and current blocking layers, involving wafer epitaxy and layer designs have been proposed [5-10].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.