Abstract

AbstractA large amount of a precipitated amorphous white silica nanofiller was mixed with a high‐cis polybutadiene rubber. The silica surfaces were pretreated with bis(3‐triethoxysilylpropyl)tetrasulfide (TESPT). TESPT is a sulfur‐containing bifunctional organosilane that chemically adheres silica to rubber. The rubber was cured primarily with sulfur in TESPT, and the cure was optimized by the addition of a sulfenamide accelerator, which helped to form sulfur chemical bonds between the rubber and the filler. The hardness, tensile properties, tear strength, abrasion resistance, modulus, and cyclic fatigue life of the cured rubber improved substantially when the filler was added. Interestingly, this new technique produced a rubber with good mechanical properties, and only one accelerator was needed to optimize the chemical bonding between the rubber and the filler and fully cure the rubber. As a result, a substantial reduction in the use of the curing chemicals was achieved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.