Abstract

Over the past few decades, biotransformations of compounds with complicated and reinforced structures, especially some poorly biodegradable organic pollutants, have attracted extensive research attention. Benefiting from recently developed techniques of protein engineering, oxidoreductase industrial applications such as laccases, tyrosinases, and various oxygenases have been recognized as a promising alternative technique as compared with the conventional treatment processes of industrial textile effluents. However, the lack of long-term operational stability and reusability of the above-mentioned enzymes may limit their further large-scale industrialization. To overcome this, a novel biocatalyst was developed by immobilizing laccase from Trametes versicolor onto ultraporous gamma-alumina powders (laccase@UPA(γ)), followed by transferring it into a portable and easy-to-carry bioreactor for Remazol Brilliant Blue R (RBBR) dye biodegradation. The obtained results showed that the treatment capacity of laccase@UPA(γ) towards RBBR reached about 60 mg/g after 24 h of contact time at pH 5. These preliminary results highlight the potentials of bio-based inorganic materials in industrial wastewater treatment, which can broaden our understanding of their practical applications in the environmental field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.