Abstract

The adsorption behavior of the anionic dyes Remazol Brilliant Blue R (RBBR) and Reactive Black 5 (RB5) from aqueous solutions by polyethylenimine ozone oxidized hydrochar (PEI-OzHC) was investigated. The adsorption capacities of both dyes increased with functionalization of PEI in the hydrochar adsorbent. The results of surface characterization (FTIR, BET, TGA, elemental analysis, and SEM) showed that PEI modification greatly enhanced the adsorbent surface chemistry with a slight improvement of adsorbent textural properties. In addition, the adsorption kinetics data showed an excellent adsorption efficiency as reflected in the high removal percentages of the anionic dyes. The Isotherm results indicated that RBBR and RB5 dye adsorption occurred via monolayer adsorption, and chemisorption was the rate-controlling step. The PEI-OzHC adsorbent possesses higher maximum Langmuir adsorption capacity towards RBBR (218.3 mg/g) than RB5 (182.7 mg/g). This increase in adsorption capacity is attributed to the higher number of functional groups in RBBR that interact with the adsorbent. This study reveals the potential use of adsorbents derived from pine wood hydrochar in municipal as well as industrial wastewater treatment. Furthermore, surface chemistry modification is proven as an effective strategy to enhance the performance of biomass-derived adsorbents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call