Abstract

A novel one-walled meso-cyanophenyl functionalized calix[4]pyrrole (4) was synthesized from cyanophenyl appended dipyrromethane (3) through conventional strategy and also by utilizing deep eutectic solvent of N,N'-dimethyl urea (DMU) & L-(+)-tartaric acid (TA) in a ratio of 7:3. The structural confirmation of 4 was done through 1H-NMR, 13C-NMR, FT-IR, and HRMS spectral data. Anion binding studies of the receptor 4 with several anions (halides, trigonal oxoanions, tetragonal oxoanions, etc.) used as tetrabutylammonium (TBA) salts, were successfully investigated by virtue of UV–Vis spectroscopy and time dependent density functional theory (TD-DFT). Notably, the UV–Vis absorbance titrations performed in CH3CN solvent, revealed significantly higher anion binding of receptor 4 with F¯, Cl¯, Br¯, and SCN¯ in comparison to the simple C4P. This can be ascribed to the fact that the cyanophenyl moiety is π-acidic in nature which participates in anion complexation through weak anion-π interactions (observed through 1H-NMR spectroscopy) and hence modulates anion binding through cooperative effect of preliminary NH-hydrogen bonding due to C4P scaffold and anion-π contacts due to cyanophenyl moiety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call