Abstract

β-Cyclodextrin cross-linked succinoglycan dialdehyde hydrogels was prepared for hydrophobic drug delivery. Succinoglycan dialdehyde (SGDA) was synthesized from sodium periodate oxidation of succinoglycan isolated from Sinorhizobium meliloti Rm1021. Aminoethylcarbamoyl-β-cyclodextrin (ACD) was crosslinked with SGDA to form a succinoglycan dialdehyde/aminoethylcarbamoyl-β-cyclodextrin (SGDA/ACD) hydrogels. The SGDA/ACD hydrogels exhibited a 65.7 % improvement in storage modulus (G′) and a 5.7-fold higher compressive strain than the SGDA/poly(ethylene glycol) diamine (PEG) hydrogels as controls. A hardly soluble drug, baicalein was used for the drug loading and release properties of SGDA/ACD hydrogels. Baicalein was released about 98 % within 48 h at pH 7.4, but not completely released even after 48 h at pH 2.0. In addition, at pH 7.4, only about 56 % of the baicalein loaded on the SGDA/PEG hydrogels was released within 48 h, while about 98 % of the baicalein loaded on the SGDA/ACD hydrogels was released within 48 h. It indicates that ACD significantly improved the solubilization efficacy of the baicalein. In vitro testing of cell viability using HEK-293 cells also showed that the SGDA/ACD hydrogels were suitable for the cells. In conclusion, SGDA/ACD hydrogels significantly enhance the utilization of baicalein and provide potential applications in drug delivery systems for hardly soluble drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.