Abstract

UV-activated catalytic hydrosilation is a low-temperature crosslinking process that has attracted attention for its high efficiency and lower energy demand relative to thermal curing. In this study, formulations comprising industrially relevant model silanes and Pt photocatalysts trimethyl(methylcyclopentadienyl)platinum(IV) and trimethyl(pentamethylcyclopentadienyl)platinum(IV) (MeCpPtMe3 and Cp*PtMe3, respectively) were prepared with and without a photosensitizer (PS) and assessed for catalytic performance by a novel strategy. Photopolymerizations were initiated using different wavelengths from LEDs and monitored in real-time using an Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) “well” strategy to track the degree of cure in ultra-thin films by consumption of hydride via the disappearance of the Si-H bending absorption band at 915 cm−1. Irradiation of formulations with 365 nm excitation showed higher conversions relative to 400 nm light and improvements to calculated initial reaction rates by incorporation of a PS suggested increased sensitization to 365 nm irradiation. To the best of our knowledge, this is the first study to report catalytic performance, electronic absorption spectroscopic data, and the crystal structure of Cp*PtMe3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.