Abstract

Existing conventional biological treatment techniques face numerous limitations in effectively removing total petroleum hydrocarbons (TPHs) and ammonia (NH4+-N) from oilfield-produced water (OPW), highlighting the pressing need for innovative pre-oxidation and biological treatment processes. In this study, a pyrite-activated peroxymonosulfate (PMS)-coupled heterotrophic ammonia assimilation (HAA) system was established to achieve satisfactory system performance for OPW treatment. Pyrite sustained-release Fe2+-activated PMS was used to produce SO4•− and •OH, and 71.0 % of TPHs were effectively removed from the oil wastewater. The average TPHs and NH4+-N removal efficiencies in the test group with pre-oxidation were 96.9 and 98.3 %, compared to 46.5 and 77.1 % in the control group, respectively. The maximum fluorescence intensities of tryptophan protein and aromatic protein in the test group declined by 83.7 %. Fourier transform ion cyclotron resonance mass spectrometry revealed that pre-oxidation degraded more long-chain hydrocarbons and aromatic family compound, whereas the HAA process produced more proteins and carbohydrates. Pyrite-PMS promoted the enrichment of ammonia-assimilating bacteria, alleviating the explosive increase in extracellular polymeric substances and reducing sludge settleability. The low cost, efficiency, green chemistry principles, and synergies of this approach make it a powerful solution for practical OPW treatment to reduce environmental impacts and promote sustainable wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.