Abstract

Deep vein thrombosis (DVT) is a serious health issue that often leads to considerable morbidity and mortality. Diagnosis of DVT in a clinical setting, however, presents considerable challenges. The fusion of metabolomics techniques and machine learning methods has led to high diagnostic and prognostic accuracy for various pathological conditions. This study explored the synergistic potential of dual-platform metabolomics (specifically, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS)) to expand the detection of metabolites and improve the precision of DVT diagnosis. Sixty-one differential metabolites were identified in serum from DVT patients: 22 from GC-MS and 39 from LC-MS. Among these, five key metabolites were highlighted by SHapley Additive exPlanations (SHAP)-guided feature engineering and then used to develop a stacking diagnostic model. Additionally, a user-friendly interface application system was developed to streamline and automate the application of the diagnostic model, enhancing its practicality and accessibility for clinical use. This work showed that the integration of dual-platform metabolomics with a stacking machine learning model enables faster and more accurate diagnosis of DVT in clinical environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.