Abstract
This work presents a new strategy to fabricate optical fiber surface-enhanced Raman scattering (SERS) probes with high-performance remote sensing prepared by thiol functionalization of silica fiber taper, and further in situ nucleation and growth of silver nanoparticles (AgNPs). The prepared fiber probes can effectively identify the analyte 4-aminothiophenol (4-ATP) with a limit of detection (LOD) as low as 2.15 × 10−11 M using a portable commercial Raman spectrometer. Simultaneously, such fiber probes have shown a good reproducibility with the relative standard deviation (RSD) value of 7.6%, and possessed high signal stability at room temperature over one month. Furthermore, this approach provides new insight into the fabrication of fiber SERS probe integrated the advantages in terms of sensitivity, reproducibility and stability, which shows great potential for practical SERS applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have