Abstract

Polychlorinated dibenzo-p-dioxins (PCDDs), characterized by their extreme toxicity, high persistency and bioaccumulation, regard as one of the most concerned environmental pollutants on the priority list. In this study, microwave-hydrothermal and photoreduction methods were adopted for fabrication of ternary Au@Fe/TiO2 composites for removal of 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) under UV–Vis light irradiation. The acquired materials were characterized and analyzed by XRD, TEM, XPS, UV–Vis DRS, PL, etc. As a result, the 1%Au@1%Fe/TiO2 exhibited much higher photocatalytic activity that 96.3% of 2,8-DCDD was removed within 160 min with respect to that of Fe/TiO2 (3.0 times) and TiO2 (5.5 times). It revealed the active substances might be produced, which were verified by ESR analysis. In a comparison, the 1%Au@1%Fe/TiO2 also exhibited high activity in that 97.2% of 2,8-DCDD was removed within 240 min under an anoxic atmosphere. The 1%Au@1%Fe/TiO2 systems were all pH-dependent that 2,8-DCDD could be fully degraded in neutral conditions. The results of repeatability on 1%Au@1%Fe/TiO2 showed that the sample was high stability. Fe doping improved the charge separation of TiO2 and Au modification improved the activity via SPR effect and Mott-Schottky barrier. The degradation mechanisms and pathways were proposed and discussed in detail. The current work develops a new approach on photocatalytic oxidation and reductive dechlorination of dioxins and may open a new opportunity to extend the application range of TiO2 catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call