Abstract

In this paper, a novel approach and framework based on interval-dependent degree and probability distribution for multi-criteria decision-making problems with multi-valued neutrosophic sets (MVNSs) is proposed. First, a simplified dependent function and distribution function are given and integrated into a concise formula, which is called the interval-dependent function and contains interval computing and probability distribution information in an interval. Then a transformation operator is defined and it is shown how to convert MVNSs into an interval set. Subsequently, the interval-dependent function with the probability distribution of MVNSs is deduced. Finally, an example and comparative analysis are provided to verify the feasibility and effectiveness of the proposed method. In addition, uncertainty analysis, which reflects the dynamic change of the ranking result with decision-makers’ preferences, is performed by setting different distribution functions, which increases the reliability and accuracy of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call