Abstract

With increasing consumption of natural gas as a clean energy source and demand for efficient use of cheap and abundant coal, the production of synthetic natural gas from coal has been receiving considerable interest. In this study, the methanation reaction of coal-derived syngas for the production of synthetic natural gas was investigated using numerical simulations. In particular, the concept of a sorption-enhanced reaction, in which CO2 removal by sorption is carried out simultaneously with the reaction, was newly applied to the methanation reaction. Effects of the operating parameters such as the fraction of catalyst and sorbent, temperature, pressure, and feed ratio (H2/CO, H2O/CO, and CO2/CO) on CO conversion and purity, selectivity, and productivity of CH4 were evaluated by computational studies. It was found that the performance of the sorption-enhanced methanation reaction is controlled by both thermodynamic equilibrium and reaction kinetics. Therefore, the reaction would require an optimal cataly...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call