Abstract

ABSTRACTA novel SiC optical detector that produces optical signal in contrast to the electric signal generated by conventional electrical detectors. The optical detector is a remote sensor providing response to incident photons from a distant object. The incident photons modify the refractive index and, consequently, the reflectance of the doped SiC by altering the electron densities in the valence band and the acceptor energy levels. This variation in the refractive index or reflectance represents the optical signal as the sensor response, which can be determined with a probe laser such as a He-Ne laser or a light-emitting diode. The sensor can be applied to numerous remote sensing applications including high-temperature or harsh environments due to the optical read-out of the detector response with a probe laser. The effects of different dopants on the detector response for sensing different chemical species, or equivalently imaging in different MWIR wavelengths, have been studied and the dopant concentration has been found to affect the optical signal. These results indicate that a new class of SiC detectorsclassified as optical detectors can be produced for a variety of wavelengths using different dopants for numerous applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.