Abstract

Alphaviral vectors inhibit host cell protein synthesis and are cytotoxic. To overcome these limitations, we modified the nonstructural protein-2 (nsP2) gene in the Semliki Forest virus (SFV) vector, pSFV1. Packaging of SFV replicons with two point mutations in nsP2 resulted in high-titer recombinant SFV(PD) particles. SFV(PD) led to more efficient host cell protein synthesis, exhibited reduced cytotoxicity and improved cell survival, and allowed greater and prolonged transgene expression than the original vector, SFV. In dissociated hippocampal neurons and organotypic rat hippocampal slices, SFV(PD) infection preserved neuronal morphology and synaptic function more efficiently than SFV. Combination of the two point mutations with a replication-persistent mutation in nsP2 resulted in a highly temperature-sensitive vector, SFV(PD713P), which efficiently transduced neurons in hippocampal slice cultures. At 31 degrees C, SFV(PD713P) allowed continuous transgene expression in BHK cells, at amounts comparable to SFV(PD). These new SFV mutants are expected to substantially broaden the application of alphaviral vectors in neurons and other mammalian cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call