Abstract

AbstractUnlike conventional opaque solar cells, semi‐transparent solar cells enable simultaneous electricity generation and light transmission. Along with solar energy harvesting, the offered multiple functionalities of these technologies, such as aesthetic appearance, visual comfort and thermal management, open diverse integration opportunities into versatile technological applications. In this work, the first demonstration of a novel semi‐transparent solar cell based on ultrathin hydrogenated amorphous Si/Ge multiple quantum wells (MQW) is reported. Through optoelectronic modelling, the advantages of ultrathin MQW as photoactive material to overcome the intrinsic limitations of thin (20 nm) and ultrathin (2.5 nm) single quantum well (SQW) counterparts are explained. This allows extra degree of freedom for both optical design and bandgap engineering. Mainly, the multiplication of the QWs number in a periodic configuration, taking advantage of effective synergy between electronic and photonic confinements, leads to an improvement of photocurrent, while preserving high voltage and fill factor and ensuring significant transparency. The MQW new concept yields a boost in power conversion efficiency up to 3.4% and a considerable average visible transmission of about 33%. A light utilization efficiency above 1.1% is achieved, which can be considered as one of the highest among inorganic semi‐transparent solar cell technologies. The successful demonstration of ultrathin semi‐transparent Si/Ge MQW solar cells indicates the promising integration potential of this emerging photovoltaic technology for supplying systems in relevant applications such as in buildings, vehicles and greenhouses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call