Abstract
Over several years our group has sought to synthesize and identify selective ligands for imidazoline (I) receptors, in particular the I2 binding site. As a consequence, [3H]2-(2-benzofuranyl)-2-imidazoline (2BFI) has proved extremely useful for binding and autoradiographic studies. More recently we have synthesized a BU series of compounds and examined these for their affinities for both I1 and I2 binding sites. BU224 (2-(4,5-dihydroimidaz-2-yl)-quinoline) shows high affinity for I2 receptors with a Ki of 2.1 nM. BU226 (2-(4,5-dihydroimidaz-2-yl)-isoquinoline) demonstrated slightly higher affinity (Ki 1.4 nM) for I2 receptors, but overall BU224 displayed greater selectivity for I2 over I1 receptors (832-fold) than BU226 (380-fold). Both compounds showed low (microM) affinity for alpha 2-adrenoceptors. Given BU224's ability to cross the blood brain barrier, we predict that its in vivo effects are likely to be mediated via I2 receptors. Brain dialysis revealed BU224 to dose dependently (0-20 mg/kg i.p.) elevate basal noradrenaline in rat frontal cortex and basal dopamine in striatum. In a rat model of opiate withdrawal, behavioral studies showed that BU224 (10 mg/kg, s.c.) was able to reduce acute weight loss and diarrhea, but not the number of wet dog shakes associated with the withdrawal syndrome.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.