Abstract

There is growing evidence that seizures are accompanied by multi-system changes, not only in the brain but also in organs and systems under its control. Non-EEG measurements from these systems could be leveraged to improve seizure prediction, which is difficult but critical to the success of next-generation epilepsy therapies. Clinical electrophysiology studies during presurgical patient evaluations routinely collect continuous EEG but also ECG data that span multiple days. Prior work has reported electrocardiographic changes but has primarily focused on ventricular activity and brief peri-ictal intervals. Using novel data-driven classification and separation of the ECG high-dimensional signal space, this study investigated seizure-related changes in both ventricular and atrial activity. Measures of complexity as well as heart rate and R-R interval length were analyzed over time in continuous ECGs from 22 pediatric patients with pharmacoresistant seizures and no diagnosed cardiovascular anomalies. Fifteen patients (>68%) had significant changes in atrial or ventricular activity (or both) in intervals containing seizures. Thus, for a substantial number of patients, cardiac markers may be specifically modulated by seizures and could be leveraged to improve and personalize seizure prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.