Abstract

Dual-stator brushless doubly fed generator (DSBDFG) is a novel generator applied for wind power generation, and the electromechanical energy conversion between the stator and rotor is realised by the magnetic field modulation of the special rotor structure. Therefore, the rotor design is critical to improve the performance of DSBDFG. In this study, the different rotor structures are compared and analysed, and the position of the non-magnetic ring is determined. In order to reduce the computational cost and improve the optimisation efficiency, the surrogate model coupled with the multi-island geometric algorithm is applied for the optimisation of the magnetic barrier layer of the cage barrier rotor. In addition, in order to reduce the effect of skin effect on the copper loss of cage bars of the rotor, the different simulation models, whose cage bars have different layer number, are simulated and analysed. Finally, the simulation and experimental results verify the correctness of the theoretical analysis and the effectiveness of surrogate model used for the rotor optimisation design of DSBDFG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.