Abstract
From traditionally handmade items to the ability of people to use machines to process and even to human-robot collaboration, there are many risks. Traditional manual lathes and milling machines, sophisticated robotic arms, and computer numerical control (CNC) operations are quite dangerous. To ensure the safety of workers in automated factories, a novel and efficient warning-range algorithm is proposed to determine whether a person is in the warning range, introducing YOLOv4 tiny-object detection algorithms to improve the accuracy of determining objects. The results are displayed on a stack light and sent through an M-JPEG streaming server so that the detected image can be displayed through the browser. According to the experimental results of this system installed on a robotic arm workstation, it is proved that it can ensure recognition reaches 97%. When a person enters the dangerous range of the working robotic arm, the arm can be stopped within about 50 ms, which will effectively improve the safety of its use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.