Abstract

Digital and Semi-Digital Hadronic Calorimeters (S)DHCAL were suggested for future Colliders as part of the particle-flow concept. Though studied mostly with RPC-based techniques, investigations have shown that Micro Pattern Gaseous Detector (MPGD)-based sampling elements could outperform in terms of average pad multiplicity or at higher rates. An attractive, industry-produced, robust, particle-tracking detector for large-area coverage, e.g. in (S)DHCAL, could be the novel single-stage Resistive Plate WELL (RPWELL). It is a single-sided THick Gaseous Electron Multiplier (THGEM) coupled to the segmented readout electrode through a sheet of large bulk resistivity. We summarize here the preliminary test-beam results obtained with 6.5 mm thick (incl. electronics) 48×48 cm2 RPWELL detectors. Two configurations are considered: a standalone RPWELL detector studied with 150 GeV muons and high-rate pions beams and a RPWELL sampling element investigated within a small-(S)DHCAL prototype consisting of 7 resistive Micro-MEsh Gaseous Structure (MICROMEGAS) sampling elements followed by 5 RPWELL ones. The sampling elements were equipped with a Semi-Digital readout electronics based on the MICROROC chip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call