Abstract

Technical fabrics find extensive use as reinforcement in plastic components across various applications. Traditionally, these fabrics are produced using wide weaving machines with a constant fabric width and are then cut to achieve the desired component geometry, leading to significant waste generation. An effective approach to minimizing waste and conserving resources involves utilizing fabrics with outer contours that match the desired component geometry from the outset. Until now, the production of width-variable fabrics during the weaving process has not been achievable using wide weaving machines. Addressing this limitation, this paper introduces a novel reed design specifically developed for wide weaving machines. The paper presents the design concept of the new reed and elucidates the fabric development process associated with its implementation. Furthermore, the resulting fabric properties and physical relationships are demonstrated based on manufactured samples. By enabling the production of width-variable fabrics, this innovative approach aims to contribute to more sustainable manufacturing practices in the field of technical fabrics—reducing waste and optimizing resource utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call