Abstract

By following the inspirational work of McCulloch and Pitts [1], lots of neural networks have been proposed, developed and studied for scientific research and engineering applications [2][18]. For instance, one classical neural network is Hopfield neural network (HNN) which was proposed by Hopfield in the early 1980s [2]. Another classical neural network is based on the error back-propagation (BP) algorithm, i.e., BP neural network, which was developed by Rumelhart, McClelland and others in the mid-1980s [3]. Generally speaking, according to the nature of connectivity, these neural networks can be classified into two categories: feedback neural networks (or termed recurrent neural networks, RNN) and feed forward neural networks. Recently, due to the in-depth research on neural networks, the artificial neural-dynamic approach based on RNN has been viewed as a powerful alternative to online solution of mathematical problems arising in numerous fields of science and engineering, such as matrix inversion in robots redundancy resolution (as an essential part of the pseudoinversetype solution) [16], [18].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.